An **identity** is an equation that is universally true for all elements in some set. For example, the equation a+b=b+a is an identity for real numbers because it is true for all real numbers a and b. The collection of set properties in the next theorem consists entirely of set identities. That is, they are equations that are true for all sets in some universal set. ## Theorem 6.2.2 Set Identities Let all sets referred to below be subsets of a universal set U. 1. Commutative Laws: For all sets A and B, (a) $$A \cup B = B \cup A$$ and (b) $A \cap B = B \cap A$. 2. Associative Laws: For all sets A, B, and C, (a) $$(A \cup B) \cup C = A \cup (B \cup C)$$ and (b) $$(A \cap B) \cap C = A \cap (B \cap C)$$. 3. Distributive Laws: For all sets, A, B, and C, (a) $$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$ and (b) $$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$. 4. Identity Laws: For all sets A, (a) $$A \cup \emptyset = A$$ and (b) $A \cap U = A$. 5. Complement Laws: (a) $$A \cup A^c = U$$ and (b) $A \cap A^c = \emptyset$. 6. Double Complement Law: For all sets A, $$(A^c)^c = A$$ 7. Idempotent Laws: For all sets A, (a) $$A \cup A = A$$ and (b) $A \cap A = A$. 8. Universal Bound Laws: For all sets A, (a) $$A \cup U = U$$ and (b) $A \cap \emptyset = \emptyset$. 9. De Morgan's Laws: For all sets A and B, (a) $$(A \cup B)^c = A^c \cap B^c$$ and (b) $(A \cap B)^c = A^c \cup B^c$. 10. Absorption Laws: For all sets A and B, (a) $$A \cup (A \cap B) = A$$ and (b) $A \cap (A \cup B) = A$. 11. Complements of U and Ø: (a) $$U^c = \emptyset$$ and (b) $\emptyset^c = U$. 12. Set Difference Law: For all sets A and B, $$A-B=A\cap B^c$$. p. 267